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Given a set X , a metric is a function d : X × X → R≥0 such that:

1 d(x , y) = 0 if and only if x = y ;
2 d(x , y) = d(y , x);
3 d(x , z) ≤ d(x , y) + d(y , z).

Every metric space generates a topology with base

B = {Bd(x , ε) | ε ∈ R+},

where

Bd(x , ε) = {y ∈ X | d(x , y) <G ε}.

A topological space (X , τ) is said metrizable if there is a metric d on X
generating τ .
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Non-classical metrics: from R to other structures G.

Given a set X and a structure G = ⟨G ,+G, 0G,≤G⟩, a G-metric is a
function d : X 2 → G≥0G such that:

1 d(x , y) = 0G if and only if x = y ;
2 d(x , y) = d(y , x);
3 d(x , z) ≤G d(x , y) +G d(y , z).

A topological space (X , τ) is said G-metrizable if there is a G-metric d on
X generating τ .
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How different/more general are G-metrics?

Deg(G) is the coinitiality of G+ = {ε ∈ G | ε >G 0G}.

Remark: If X is G-metrizable for Deg(G) = µ, then the smallest size of a
local base at any non-isolated point is µ.

Remark: if Deg(G) ̸= Deg(H), then

G-metrizable ∩H-metrizable = discrete.

A space is said µ-metrizable if it is G-metrizable for some totally ordered
group1 G with deg(G) = µ.

1totally ordered continuous semigroup is enough
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The countable case: ω-metrizability

Fact 1: metrizable ⇔ ω-metrizable.

Fact 2: metrizable ̸⇒ G-metrizable for all G (with Deg(G) = µ).

For example, R is not Q-metrizable.

A space is ultrametrizable if it is G-metrizable for G = ⟨R,max, 0,≤⟩.

Fact 3: ultrametrizable ⇔ G-metrizable for all G with Deg(G) = µ.
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The uncountable case: µ-metrizability

Let G range among totally ordered (continuous semi)groups of degree µ.

Fact: If µ > ω, the following are equivalent for a space X :
X is G-metrizable for some G (µ-metrizable);
X is G-metrizable for every G (µ-ultrametrizable).

Corollary: If µ > ω, every µ-metrizable is Lebesgue zero-dimensional.

Example: λµ is µ-metrizable.
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Figure 1: Classification of H-metrizable non-discrete spaces for some structure H.
H0, H1 and H2 are totally ordered (continuous semi)groups with Deg(Hi ) = ωi .
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Characterizations.

Second countable spaces: Urysohn and Sikorski

The weight w(X ) is the smallest size of a base for the topology.

Theorem (Urysohn Metrization Theorem)
Suppose w(X ) = ω. Then, X is metrizable if and only if X is T3.

X is µ-additive if intersections of < µ-many opens are open.
Every µ-metrizable space is µ-additive.

Theorem (Sikorski 1950)
Suppose w(X ) = µ. Then, X is µ-metrizable if and only if X is T3 and
µ-additive.

(Remark: Every space is ω-additive.)
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Characterizing metrizability: Bing, Nagata, Smirnov, Arhangel’skij, ...

A family A of open subsets of topological space X is said locally finite
(resp., locally < γ-small) if every point has an open neighborhood that
intersect only finitely many (resp., < γ) sets from A.

A NSγδ -base is a base that is the union of δ-many locally < γ families.

Theorem (Bing-Nagata-Smirnov Metrization Theorem)
The following are equivalent:

1 X is metrizable
2 X is T3 with a NSωω-base.
3 X is T3 with a NS2

ω-base.

(Remark: w(X ) = ω implies NS2
ω-base).
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A base B is regular if for every open U and for every x ∈ U there is an
open set V such that x ∈ V ⊆ U and only finitely many elements of B
meets both V and X \ U.

Remark: If B is regular, then:
1 (B,⊇) is wellfounded.
2 ht(B,⊇) = ω (every B ∈ B has finitely many predecessors).
3 Every level Levα(B,⊇) is locally finite.

Theorem (Arhangel’skij metrization Theorem)
X is metrizable if and only if it is T1 and has a regular base.
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Characterizing ultrametrizability: de Groot, Monna, Nyikos, de Vries, ...

A base B for X is said tree base if (B,⊇) is a tree.

Remark: Every tree base of height ω is a regular base.

Theorem (Various authors)
The following are equivalent:

1 X is ultrametrizable;
2 X is metrizable and Lebesgue zero-dimensional;
3 X has a NSωω-base of clopens;
4 X has a base union of ω-many clopen partitions;
5 X has a tree base of height ω;
6 X is homeomorphic to a subset of λω for some λ;
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Metrizability VS ultrametrizability:

Metrizable Ultrametrizable
Metrizable and Lebesgue zero-dimensional

NSωω-base NSωω-base of clopens
NS2

ω-base Base union of ω-many clopen partitions
Regular base Tree base of height ω

∼= A ⊆ λω for some λ
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Characterizing µ-metrizability and µ-ultrametrizability for µ uncountable:
Artico, Hodel, Moresco, Nyikos, Reichel, Shu-Tang, Sikorski, ...

Recall: If µ > ω, every µ-metrizable space is Lebesgue zero-dimensional.

Theorem (Various authors)
If µ > ω, the following are equivalent:

µ-metrizable.
µ-metrizable and Lebesgue zero-dimensional.
µ-ultrametrizable.
X is µ-additive and has a NSδµ-base (for some/every 2 ≤ δ ≤ µ).

X is µ-additive and has a NSδµ-base of clopens (for 2 ≤ δ ≤ µ).
X is µ-additive and has a µ-regular base.
X is µ-additive and has a tree base of height µ.
X is homeomorphic to a subset of λµ (with bounded top.) for some λ.
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A characterization of metrizability through games.

So what grants (µ-)metrizability?

Answer: Basically, two things:
1 X has some paracompactness property: we can refine covers into

(unions of) locally finite covers.
2 The space has “countable height” (or height µ for µ-metrizability).

Conjecture: X is µ-metrizable if and only if it is paracompact and every
point has a local base of size µ? (No: Sorgenfrey line)
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The µ-uniform local base game: at every round α < µ, player I pick a
point xα ∈ X , and player II replies with an open set Vα containing xα.

I x0 x1 ... xγ ...
II V0 V1 ... Vγ ...

At the end of the game, player II wins if
⋂

α<µ Vα = ∅ or if {Vα | α < µ}
is a local base of a point x ∈ X , otherwise I wins.

Definition
We say that a topological space is µ-uniformly based if player II has a
winning strategy in the µ-uniform local base game.

Remark: Every point of a µ-unfiromly based space has a local base of size
at most µ.
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Remark: In every µ-metrizable space, II has a winning tactic in the
µ-uniform local base game: let her play spheres of vanishing radii.

Theorem (A., Motto Ros)
X is µ-metrizable if and only if it is µ-additive, paracompact and
µ-uniformly based.

Corollary (A., Motto Ros)
X is metrizable if and only if it is paracompact and ω-uniformly based.
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NS-bases VS tree bases VS µ-ULB

Recall: If X is µ-additive (and T3), then TFAE:
1 Tree base of height µ;
2 NSδµ-base (for any δ);
3 µ-ULB and paracompact.

Proposition (A., Motto Ros)

Suppose µ > ω and and the µ-Borel hierarchy does not collapse before Σ0
2

on 2γ for some γ < µ.
There exists a T3, (Lebesgue zero-dimensional, paracompact,) µ-uniformly
based space X with a tree base of height µ that is not NSµµ.
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Proposition (A., Motto Ros)
There exists a µ-additive space X with a tree base where every point has a
local base of size µ, but X is not µ-metrizable (nor NSµµ nor µ-ULB).
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Proposition (A., Motto Ros)
Every space with a tree base of height µ is µ-uniformly based (but II does
not have necessarily a tactic).

Proposition (A., Motto Ros)
Every NSµµ-space is µ-uniformly based.

Proposition (A., Motto Ros)

In every δ-additive NSδµ-space, player II has a winning tactic in the
µ-uniform local base game.
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X is (δ, µ)-paracompact if every open cover of X can be refined into a
cover that is the union of µ-many locally < δ-small open cover.

Theorem (A., Motto Ros)

Suppose X is δ-additive. Then, X has a NSδµ-base if and only if it is
(δ, µ)-paracompact and player II has a winning tactic in the µ-uniform
local base game.

Claudio Agostini (Univ. Torino) Characterizing metrizability 3 February 2022 21 / 27



Thank you for the attention!
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